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The evolution of wireless communication has driven the 

advancement of 5G networks, utilizing high-frequency bands to 

deliver exceptional data rates and ultra-low latency. Path loss 

prediction has traditionally relied on empirical models such as 

Okumura-Hata and COST-231, formulated through extensive 

field measurements and mathematical calculations. However, 

these conventional models struggle with simplified 

assumptions, static parameters, and the inability to accurately 

capture non-linearities and multipath effects in modern high- 

frequency environments. This poses a challenge, as precise and 

adaptive path loss prediction is essential for efficient network 

planning and deployment in 5G and beyond. Traditional models 

lack flexibility and fail to represent real-world propagation 

conditions, necessitating advanced solutions to overcome these 

limitations. To address this, the proposed system leverages 

machine learning techniques, incorporating Ridge Regression, 

Decision Tree Regressor, and a hybrid model combining a 

Feed-Forward Neural Network (FFNN) with a Decision Tree 

Regressor. A user-friendly GUI is integrated to facilitate data 

ingestion, preprocessing, model training, evaluation, and 

prediction, ensuring a streamlined and efficient workflow for 

path loss estimation. The proposed system significantly 

enhances network design, optimizes resource allocation, and 

improves overall network performance by delivering highly 

accurate and adaptive predictions tailored to complex 

propagation scenarios in high-frequency 5G networks. By 

integrating artificial intelligence with wireless communication, 

this approach bridges the gap between conventional path loss 

models and real-world 5G deployment, ensuring efficient, 

scalable, and high-performance network infrastructure. 
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1. INTRODUCTION 

 
Over the past decade, the rapid advancement of wireless 

communication has led to the emergence of fifth-generation 

(5G) technology, revolutionizing connectivity and network 

performance. 5G promises ultra-fast data speeds, lower latency, 

 
and higher capacity, making it an essential enabler for future 

digital transformation. With the increasing demand for high- 

definition content, cloud computing, and real-time applications, 

5G plays a crucial role in ensuring seamless data transmission 

and efficient resource utilization. 

 
Beyond speed improvements, 5G facilitates massive 

connectivity by integrating a wide range of smart devices, from 

IoT sensors and wearables to autonomous vehicles and 

industrial automation systems. This expansion supports the 

vision of a fully connected world where smart cities, augmented 

reality, and mission-critical. The conceptual framework for 

Future IMT (International Mobile Telecommunications) is 

depicted highlighting essential applications that define next- 

generation networks. Using a structured layout, the 

visualization categorizes major 5G-enabled innovations such as 

ultra-high-speed connectivity, immersive 3D experiences, AI- 

driven automation, and enhanced communication for smart 

industries and intelligent infrastructure. 

 
2. LITERATURE SURVEY 

The A measurement effort described in [1] that was conducted 

at 3.7 GHz in a variety of rural Greek locales was utilized to 

create various machine learning models, which were then 

contrasted with a few chosen empirical models. However, the 

comparison was only made using information gathered from a 

thorough measurement in a rural setting. The results provided 

an RMSE in the range of 4.2–4.3 dB, demonstrating a higher 

prediction accuracy than those empirical models. 

In a previous study [2], an innovative approach was proposed 

for developing path loss models using convolutional neural 

networks (CNN), specifically through meta-learning, referred 

to as the CNN model with meta-learning. This approach was 

compared to existing CNN and FI models. It is important to 

note that the application of this method was limited to the smart 

factory environment and the specific frequency of 28 GHz. 

The most popular artificial neural network (ANN) multilayer 

perception (MLP) neural network was utilized in [3] to reliably 

predict path loss. It was built by combining the data from the 

transmitting antenna and that of the receiver (Rx), including 3D 

locations and environmental characteristics. To assess the 

model’s performance, a comparison was made between the 

actual measured outcomes and the predicted results, excluding 

considerations for losses from the base station (BS). Notably, 

the inclusion of environmental variables led to enhancements in 

the precision and reliability of the prediction models. 
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Utilizing a dataset of field measurements at 28 GHz in a 

suburban environment, Cheng et al. [4] introduced an 

innovative path loss modelling technique based on 

convolutional neural networks (CNN). In their research, they 

proposed two key components: the enhanced local area multi- 

scanning method (E-LAMS) and a unique CNN architecture 

incorporating four subnetworks with shared features between 

convolution layers. Nonetheless, it is worth noting that further 

improvements are required to enhance the performance of this 

model, particularly in line-of-sight scenarios. The study’s 

results indicate that the proposed CNN-based approach 

outperforms existing empirical models. 

In [5], KNN, SVR, RF, and AdaBoost were employed as four 

machine learning techniques to simulate the radio coverage 

offered by a flying base station in the urban city of Tripoli. The 

chosen algorithms were trained on a dataset produced by a ray 

tracing method. Even though only a line-of-sight (LOS) 

scenario was used in the investigation, the performance of each 

model was contrasted. The most accurate predictions came 

from the tree-based ensemble models, with AdaBoost achieving 

the lowest MAPE value of 2.72%. 

A deep learning model, such as the LSTM, was used to develop 

a way of predicting fluctuations in path loss [6]. The training 

and validation data were taken from measurements of path loss 

in an urban environment. The model was compared to a 

conventional approach that predicts using the most recent 

observed median path loss value, utilizing 100 fast-fading data 

points as input data. In the validation analysis, the measurement 

campaign was restricted to an urban environment, and the error 

analysis was limited to the root mean square error. They 

outperformed the traditional method by more than 1 dB, 

achieving RMSE prediction accuracy of nearly 2 dB. 

The authors in [7] examined two machine learning models, 

using tabular data and images as two different forms of input to 

perform path loss predictions in metropolitan locations. They 

looked at occasions where CNN received just one image and 

not the other two. By simply creating three duplicates of the 

same channel, they were able to change the monochrome 

images into coloured ones while still using the same CNN 

architecture. With an MAE value of 3.07 dB as opposed to the 

3.15 dB of the conventional bimodal approaches, the proposed 

methodology outperformed existing fusion methods in terms of 

results. 

Similarly, a deep learning technique was utilized in [8] to 

explain the process of path loss based on the path profile in 

urban propagation situations. Even still, the LoS and NLoS 

scenarios’ measuring campaigns were only applicable to urban 

settings. Simulation findings demonstrated that the suggested 

model outperformed traditional models, and the explainable 

model’s accuracy reached 72%. 

In [9], image texture techniques were used to enhance the DL 

model for path loss prediction. Thus, the algorithm produced a 

new set of features that showed the specified area’s built-up 

profile. However, further experimental data are needed to verify 

and rate the effectiveness of the suggested model. The model- 

aided approach provides an improvement of about 1 dB. 

In a separate study [10], a methodology involving a 3D-CNN 

and a 3D-LAMS algorithm was applied to sample and extract 

three-dimensional spatial data between the transmitter (Tx) and 

receiver (Rx) for creating a 3D image representation. The 

measurement campaign is expected to extend its scope beyond 

urban environments to explore additional factors influencing 

path loss. Through multiple trial runs with varying dataset sizes, 

the proposed path loss prediction model demonstrated its 

optimal performance. 

To compare the similarities and differences between the CNN 

model and the NN model, Kuno et al. [11] devised a CNN 

model. They made use of the training and verification data 

supplied during the IEICE’s propagation competition. As a 

result, the CNN model’s estimation accuracy declined near the 

main roadway and the plaza. 

Three machine learning models were used in [12] for radio 

channel modeling in urban vehicle environments. However, the 

inquiry was only able to simulate LOS and NLOS conditions 

utilizing the ray tracing-generated data set. Among the chosen 

models, RF performed best with a low RMSE of 1.80 ns, while 

the MLP model had the highest RMSE at 11 ns. 

In [13], data from online sources such as OpenStreetMap and 

various Geographical Information Systems were collected to 

construct a machine learning model aimed at predicting cellular 

coverage in metropolitan regions. This model demonstrated the 

capability to promptly estimate path loss, even in the absence 

of training data from the physical measurement campaign. Also, 

numerous feature engineering strategies were investigated in 

[14] to enhance the machine learning algorithms’ predictive 

performance. They found that, especially for small datasets, 

more basic models can be just as effective as more complex 

ones. 

In [15], the author employed the image reflection technique to 

create a dataset that could be used to test any straightforward 

machine learning model for indoor prediction. The outcome of 

the comparative analysis demonstrates that the ANN model 

outperformed the linear model and provided the dataset with the 

lowest MSE and MAE values. 

A novel path loss model capable of estimating path loss was 

proposed in [16]. The proposed model is grounded in 

multidimensional Gaussian process regression (GPR), which 

predicts local shadow fading to give channels spatial 

consistency in propagation in indoor environments. To test and 

validate the suggested model, though, more varied 

environments must be used. 

In [17], the authors conducted path loss prediction at 7 GHz 

within an urban environment by employing a model-assisted 

deep learning approach. Their proposed model utilizes a distinct 

set of input features, encompassing both fundamental and 

engineered attributes. The numerical results demonstrate that 

the deep learning model outperforms the chosen empirical 

models in terms of prediction performance. The proposed 

approach must be enhanced in the context of an environment 

with additional obstacles because it is still a hybrid model. 

In similar work by [18], a viable alternative to improve path loss 

prediction with the use of the random forest model was 

proposed. The test carried out in their work showed that the use 

of the random forest technique with attributes such as 

geographical coordinates, distance, azimuth, and antenna gain 

presented better results than other considered models [19]. 
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Although additional features need to be considered to train and 

test the model to improve its performance. 

Utilizing machine learning methods, Aldossari et al. [20] 

presented innovative approaches to improve path loss models, 

addressing the challenge associated with complex channel 

characteristics and time-consuming measurements. In their 

study, they successfully reduced the measurement workload 

necessary for wireless channel modeling through the 

application of regression techniques. 

. 

•Train-Test Split: The data is divided into training and testing 

sets to evaluate the model’s performance. 

•Feature Scaling and Normalization: Standardization is applied 

to ensure that the various features contribute equally to the 

model’s learning process. 

•Exploratory Data Analysis (EDA): Visualization techniques 

such as histograms, density plots, and heatmaps help in 

understanding the distribution and correlations among the 

features. 

b. Machine Learning Model Development 

3. PROPOSED METHODOLOGY 

This research represents a comprehensive approach to 

predicting path loss in 5G high-frequency bands using machine 

learning. By integrating data preprocessing, multiple regression 

models, evaluation metrics, and user-friendly visualization 

within a single application, it addresses the challenges of 

traditional propagation models and provides a scalable, 

adaptable, and accessible solution for modern network planning 

and optimization. 
 

 

Figure 1: Proposed System 

Key Components and Workflow 

a. Data Acquisition and Preprocessing 

•Dataset Upload: The application begins with a module that 

allows users to select and load a CSV file containing simulation 

data. This data typically includes parameters such as seasonal 

variation, simulation run numbers, physical distances, time 

delays, received power, phase, angles of departure and arrival, 

path loss, RMS delay spread, season encoding, and frequency. 

•Data Cleaning and Transformation: Once the dataset is loaded, 

the project applies several preprocessing steps: 

•Label Encoding: Categorical features like seasonal variation 

are converted into numeric values using label encoding. 

•Data Augmentation: Resampling techniques are used to 

balance the dataset, increasing the number of samples to 

improve model robustness. 

•Multiple Modeling Techniques: The project incorporates 

different machine learning approaches for regression: 

•Ridge Regression: A linear model that incorporates L2 

regularization to prevent overfitting and manage 

multicollinearity. 

•Decision Tree Regression: A non-linear model that splits the 

data based on feature thresholds to capture more complex 

relationships. 

•Hybrid FFNN + Decision Tree Model: A feed-forward neural 

network (FFNN) is used to extract higher-level features from 

the dataset. These features are then fed into a decision tree 

regressor for the final prediction. This hybrid approach 

leverages deep learning for robust feature extraction while 

retaining the interpretability and efficiency of decision trees. 

•Model Training and Persistence: Each model is trained on the 

preprocessed training data. Once trained, models are saved 

(using joblib for classical ML models and Keras for the FFNN) 

so that they can be reloaded for future predictions without 

retraining, enhancing efficiency. 

c. Prediction on New Data 

•Prediction Module: Users can upload a new dataset for 

prediction. The same preprocessing steps (e.g., label encoding 

and scaling) are applied to ensure consistency with the training 

data. The pre-trained FFNN model predicts the path loss on the 

new data, and these predictions are further refined using feature 

extraction and decision tree regression. 

•Visualization of Predictions: The final predictions are 

displayed within the GUI and plotted against sample indices, 

providing a clear visual representation of the model’s output. 

d. User Interface and Integration 

•Tkinter GUI: The project features a robust Tkinter-based GUI 

that ties all the components together. The GUI includes: 

•Buttons and Controls: Dedicated buttons for uploading 

datasets, preprocessing data, training various models, 

generating performance graphs, and making predictions. 

•Text Log Window: A text widget displays logs, outputs, and 

metrics, making it easier for users to follow the workflow and 

understand the intermediate steps. 

•Visual Feedback: The integration of matplotlib and seaborn 

ensures that all visualizations (e.g., histograms, scatter plots, 

and bar graphs) are easily accessible and interpretable. 
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•Modular Architecture: The code is structured in modular 

functions, each handling a specific part of the process (data 

upload, preprocessing, model training, evaluation, and 

prediction). This modular design improves code maintainability 

and allows for easier updates or additions to the system. 

Applications: 

• 5G Network Optimization – Machine learning 

models can predict and compensate for path loss 

in high- frequency bands, improving signal coverage, 

reducing dead zones, and optimizing base station 

placement. 

• Beamforming and Antenna Tuning – By 

understanding path loss variations, the system can 

assist in dynamically adjusting beamforming 

techniques and tuning antenna parameters for better 

signal reception. 

• Smart Urban Planning – ML-based path loss models 

help in designing efficient 5G infrastructure in dense 

urban areas, ensuring optimal signal propagation 

despite obstacles like buildings and vegetation. 

• Autonomous Network Management – Predictive 

models enable self-healing and self-optimizing 

networks, allowing telecom operators to adjust power 

levels, bandwidth allocation, and handover 

mechanisms dynamically. 

• Enhanced IoT and Smart City Connectivity – Reliable 

path loss prediction ensures better connectivity for IoT 

devices, autonomous vehicles, smart traffic systems, 

and industrial automation in 5G-powered 

environments. 

4. EXPERIMENTAL ANALYSIS 

Fig. 2 illustrates how the application displays key information 

from the dataset (for example, a preview of the first few rows) 

in the text widget. This immediate feedback helps users verify 

that the correct dataset has been selected. 

 
 

Figure 2:GUI of proposed ML modelling 

for pathloss estimation system after uploading the dataset. 

 

 

Figure3: Performance comparison of existing ridge 

regressor, decision tree regressor and proposed hybrid 

FFNN +DTR models. 
 

Figure 4: Sample predictions on test 

data. 
 

Figure 5: Pathloss prediction graph obtained 

using proposed hybrid FFNN with DTR model 

Figure 3 offers a comparative bar chart (or similar visualization) 

that juxtaposes the performance metrics (such as MAE, MSE, 

RMSE, and R²) across the three models. It clearly demonstrates 

how the hybrid model performs relative to the traditional 

regression approaches, emphasizing its improved accuracy and 

robustness. 

Figure 4 displays sample predictions generated on a new test 

dataset. The GUI shows how the predicted path loss values are 

integrated into the dataset, providing users with tangible results 

that can be further analyzed or exported for operational use. 

Figure 5 presents a time-series or index-based line graph 

depicting the path loss predictions generated by the hybrid 

model. The graph provides a clear visual summary of how the 

model predicts path loss over a series of samples, aiding in the 

identification of trends and potential anomalies. 
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5. CONCLUSION 

The proposed system presents a transformative, machine 

learning–based solution for predicting path loss in 5G high- 

frequency networks, effectively addressing the shortcomings of 

traditional empirical models. By integrating multiple regression 

techniques—namely Ridge Regression, Decision Tree 

Regression, and a hybrid approach combining a Feed-Forward 

Neural Network with a Decision Tree Regressor—the system 

harnesses the strengths of both linear and non-linear modeling. 

This multifaceted approach allows for a more nuanced 

understanding of the complex propagation phenomena 

encountered in modern wireless environments, including non- 

linearities and multipath effects that traditional methods 

struggle to capture. The system is designed with a user-friendly 

graphical interface that streamlines the workflow from data 

ingestion and preprocessing to model training, performance 

evaluation, and prediction on new datasets. This integration not 

only simplifies the process for network engineers and 

researchers but also facilitates real-time decision-making in 

network planning and optimization. The dynamic nature of the 

model—coupled with its ability to adapt to varying 

environmental conditions and frequencies—ensures improved 

accuracy and robustness in predicting signal attenuation. 

Consequently, the system enables more efficient resource 

allocation and optimized base station deployment, which are 

critical for maintaining high-quality network performance. 

Overall, this innovative solution bridges the gap between 

theoretical advances in machine learning and practical 

applications in telecommunications, paving the way for 

smarter, data-driven network management strategies that meet 

the ever-evolving demands of 5G and future wireless 

technologies. 
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